高選®字库 GENTOP®

GT8SL24K4W5Q6 字库芯片

一产品规格书 —

V 1.0_A 2023-04

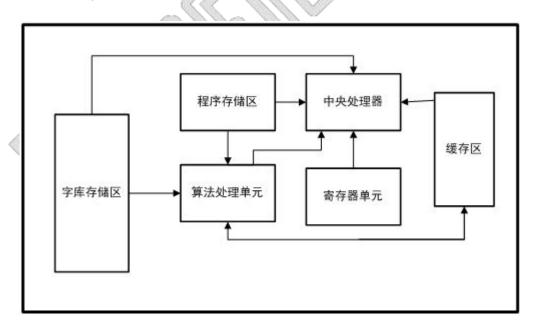
www.hmi.gaotongfont.cn

版本修订记录

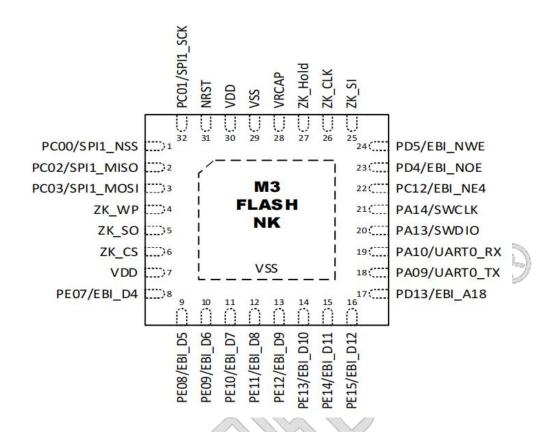
版本号	修改内容	日期	备注
V1.0	字库芯片规格书制定	2021-06	
V1.0_A	更新企业网站网址	2023-04	

目 录

目	录	3
1	概述	4
1.1	芯片特点	4
1.2	芯片结构框图	4
1.3	脚位封装图	5
1.4	脚位说明及对照表	5
1.5	SPI 引脚接口引脚描述	6
1.6	SPI 接口与主机接口参考电路示意图	7
2 7	芯片内容表	8
3 5	字库样张	9
3.1	中文字符(点阵)	9
3.2	ASCII 码字符	9
3.3	外文字符	9
	主机操作指令	10
4.1	指令列表	10
4.2	唤醒深度睡眠模式指令	10
5	液晶驱动	11
	使用方式说明	13
7 3	系统电源	14
7.1	结构框图	14
7.2	芯片供电电源	14
	外部复位 MRSTN 参考	
7.4	输入输出端口	15
	电气特性	
8.1	芯片工作条件	16
8.2	芯片功耗特性	16
8.3	芯片特性参数测量方法	17
8.4	参数特性图	18
9	封装尺寸	20
10	点阵数据验证(客户参考用)	21


1 概述

GT8SL24K4W5Q6是一款包含16、20点阵的字库芯片,支持GBK中文汉字、ASCII及16点拉丁文字符集并均兼容Unicode。排列格式为横置横排。用户通过字符内码,利用我司所提供库文件内的函数接口可直接读取该内码的点阵信息。


1.1 芯片特点

- 数据总线: SPI 串行总线接口
- 点阵排列方式:横置横排
- 时钟频率: 45MHz(max.) @3.3V
- 工作电压: 2.7V~3.6V
- 电流:工作电流: 5-25mA 睡眠电流: 4-6uA
- 工作温度: -40°C~85°C
- 封装: QFN32 5X5
- 字符集:中文 GBK
 - 兼容 UNICODE
- 字号: 16、20 点阵宋体

1.2 芯片结构框图

1.3 脚位封装图

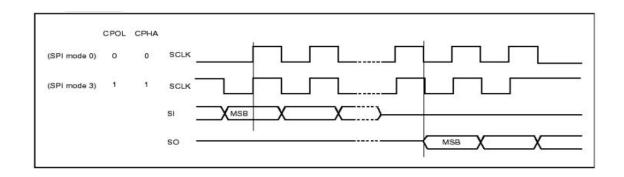
1.4 脚位说明及对照表

序号	脚位名称	输入类型	输出类型	A/D	复用功能	脚位说明				
1	PC00	CMOS	CMOS	D	SPI1_NSS	通用 1/0 端口				
2	PC02	CMOS	CMOS	D	SPI1_MISO	通用 1/0 端口				
3	PC03	CMOS	CMOS	D	SPI1_MOSI	通用 1/0 端口				
4	ZK_WP	CMOS	CMOS	D	_	字库测试引脚				
5	ZK_SO	CMOS	CMOS	D	_	字库测试引脚				
6	ZK_CS	CMOS	CMOS	D	_	字库测试引脚				
7	VDD	_	_	Р	_	系统主电源				
8	PE07	CMOS	CMOS	D	EBI_D4	通用 1/0 端口				
9	PE08	CMOS	CMOS	D	EBI_D5	通用 1/0 端口				
10	PE09	CMOS	CMOS	D	EBI_D6	通用 1/0 端口				
11	PE10	CMOS	CMOS	D	EBI_D7	通用 1/0 端口				
12	PE11	CMOS	CMOS	D	EBI_D8	通用 1/0 端口				
13	PE12	CMOS	CMOS	D	EBI_D9	通用 1/0 端口				
14	PE13	CMOS	CMOS	D	EBI_D10	通用 1/0 端口				
15	PE14	CMOS	CMOS	D	EBI_D11	通用 1/0 端口				
16	PE15	CMOS	CMOS	D	EBI_D12	通用 1/0 端口				
17	PD13	CMOS	CMOS	D	EBI_A18	通用 1/0 端口				

18	PA09	CMOS	CMOS	D	UARTO_TX	通用 1/0 端口
19	PA10	CMOS	CMOS	D	UARTO_RX	通用 1/0 端口
20	PA13	CMOS	CMOS	D	SWDIO	通用 1/0 端口
21	PA14	CMOS	CMOS	D	SWCLK	通用 1/0 端口
22	PC12	CMOS	CMOS	D	EBI_NE4	通用 1/0 端口
23	PD4	CMOS	CMOS	D	EBI_NOE	通用 1/0 端口
24	PD5	CMOS	CMOS	D	EBI_NWE	通用 1/0 端口
25	ZK_SI	CMOS	CMOS	D	_	字库测试引脚
26	ZK_CLK	CMOS	CMOS	D	_	字库测试引脚
27	ZK_HOLD	CMOS	CMOS	D	_	字库测试引脚
28	VRCAP	_	1	Р	_	电源 VCC
29	GND	_	_	Р	_	电源 GND
30	VDD	_	_	D	_	电源 VCC
31	NRST	_	_	D	_	复位引脚
32	PC01	CMOS	CMOS	D	SPI1_SCK	通用 1/0 端口

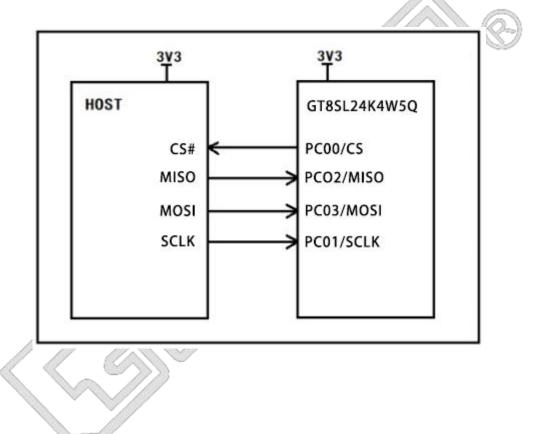
注: A =模拟端口,D =数字端口,P =电源/地;复用功能引脚 HM为连接外部 MCU 的 SPI 接口引脚;

1.5 SPI 引脚接口引脚描述


引脚序号	脚位名称	复用功能	描述
1	PC00	CS	片选输入(Chip enable input)
2	PC02	MISO	串行数据输入 (Serial data input)
3	PC03	MOSI	串行数据输出 (Serial data output)
32	PC01	SCLK	串行时钟输入(Serial clock input)

串行数据输出(MISO):该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。

串行数据输入(MOSI): 该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。


串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(CS#): 所有串行数据传输开始于 CS#下降沿, CS#在传输期间必须保持为低电平, 在两条指令之间保持为高电平。

1.6 SPI 接口与主机接口参考电路示意图

SPI 与主机接口电路连接可以参考下图

2 芯片内容表

字符集	字库	字号	字符数	字体
ASCII		8x16	127	标准
	ASCII		96	粗体
ASCII	ASCII	10x20	96	标准
字符集			96	粗体
			96	圆角字体
	ASCII	16 点阵不等宽	96	线形字体
	ASCII	24 点不等宽	96	圆角字体
汉字字符	中文 GBK	16x16	21009+1013	宋体
汉子子付	中文 GBK	20x20	21009+1013	宋体
Unicode	Unicode 拉丁文		564	标准
 转码表	UNICODE to GBK			
ヤマルライベ	GBK to Unicode			

3字库样张

3.1 中文字符(点阵)

语言	点阵大小	字体	中文字符样张
di V	16点	宋体	高通字库,绽放文字之美
中文	20点	宋体	高通字库, 绽放文字之美

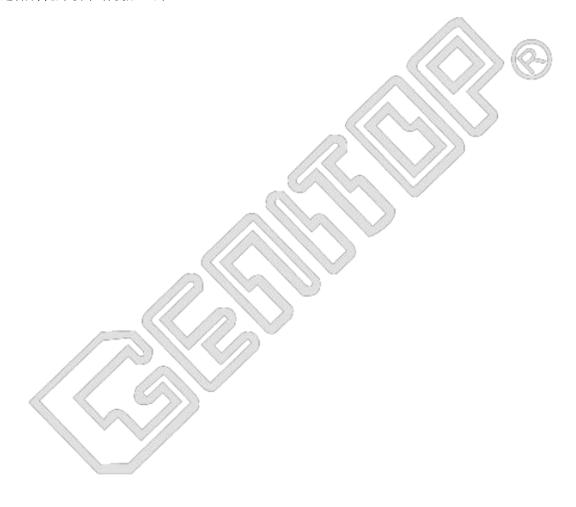
3.2 ASCII 码字符

语言	点阵大小	字体	ASCII 字符样张
	8x16	标准	AaBbCcDdEe12345
	8x16	粗体	AaBbCcDdEe12345
	10x20	标准	AaBb CcDdEe12345
ASCII	10x20	粗体	AaBbCcDdEe12345
	16 点阵不等宽	圆角字体	AaBbCcDdEe12345
	16 点阵不等宽	线形字体	AaBbCcDdEe12345
	24 点阵不等宽	圆角字体	AaBbCcDdEe12345

3.3 外文字符

语言	点阵大小	字体	外文字符样张
拉丁文	16 点阵不等宽	标准	GENITOP înflorește frumusețea textului

4 主机操作指令


4.1 指令列表

4.1.1 根据需要定制通信指令协议;

4.2 唤醒深度睡眠模式指令

4.2.1 唤醒睡眠模式方式

通过低功耗外设中断唤醒芯片

5 液晶驱动

5.1 概述 (加 7789 电路图)

GT8SL24K4W5Q 可驱动多种液晶屏幕,用户可以根据产品应用需求选择对应的驱动方式,常用驱动包含 UC1701、S6B0724、KS0108、T6963C 等。

支持驱动接口模式有3种,分别是:

- (1) 6800/8 位并行模式;
- (2) 8080/8 位并行模式;
- (3) 串行接口模式:

下图图 5-1 是串行接口模式参考电路:

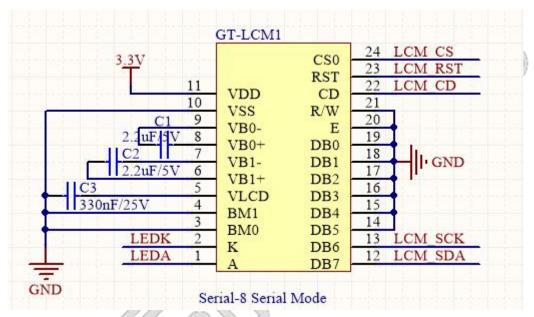


图 5-1

说明: DriverIC为 UC1701的黑白显示屏 GT-LCM07。

图 5-2 是 Driver IC 为 UC1701 的黑白显示屏 GT-LCMO7 的引脚连接,并口模式参考电路:

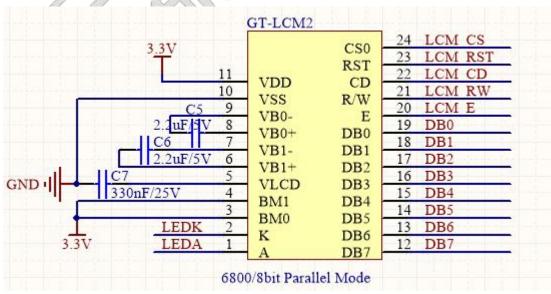
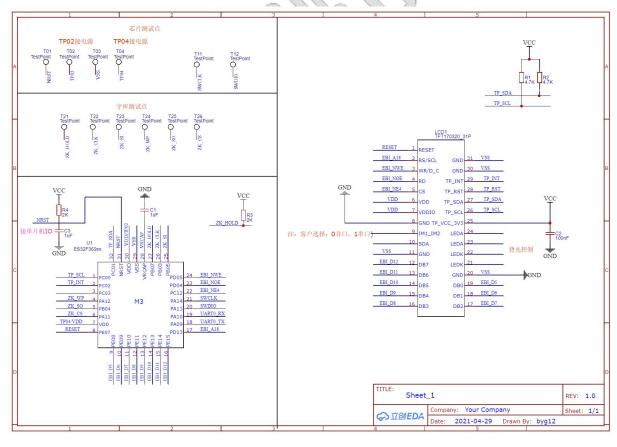


图 5-2

第 11 页 共 22 页

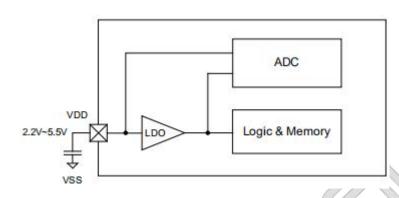

说明: GT-LCM07 液晶屏支持 6800 模式、8080 模式和串行接口模式;接口 6800 和接口 8080 的硬件连接电路一样,其中引脚定义 R/W 和 E 的复用功能为 WR0 和 WR1。

下表为 GT8SL24K4W5Q 引脚液晶驱动引脚功能描述: (8080 接口) 1、并口引脚功能列表:

引脚序号	脚位名称	并口]功能	描述					
8	PE07	EBI_D4	RST	使能引脚					
9	PE08	EBI_D5	DB0	指令数据选择引脚					
10	PE09	EBI_D6	DB1	读写引脚					
11	PE10	EBI_D7	DB2	复位引脚					
12	PE11	EBI_D8	DB3	片选					
13	PE12	EBI_D9	DB4	数据引脚					
14	PE13	EBI_D10	DB5	数据引脚					
15	PE14	EBI_D11	DB6	数据引脚					
16	PE15	EBI_D12	DB7	数据引脚					
17	PD13	EBI_A18	RS	数据引脚					
22	PC12	EBI_NE4	CS	数据引脚					
23	PD4	EBI_NOE	RD	数据引脚					
24	PD5	EBI_NWE	RW/DC	数据引脚					

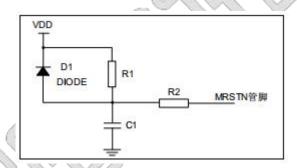
表 5-1

参考电路图如下:

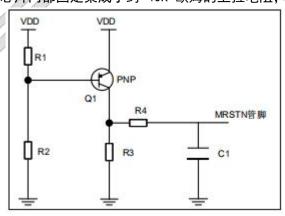

6 使用方式说明

- 1. 硬件连接:
 - a) 用户主控 MCU 通过 SPI/UART 接口连接 GT8SL24K4W5Q 芯片;
 - b) 液晶屏接口连接: 根据屏幕接口类型(串口或并口)连接到 GT8SL24K4W5Q 芯片对应引脚中;
- 2. 软件指令设置:
- a)获取字符数据模式:设置字符参数和编码后通过SPI/UART接口将指令传输给GT8SL24K4W5Q芯片,得到对应的字符数据;
- b)液晶驱动模式:此模式下可执行文字显示和绘图显示;文字显示模式可以设置编码及点阵等信息;绘图显示可以设置图片宽度和高度及坐标等信息;

7 系统电源


7.1 结构框图

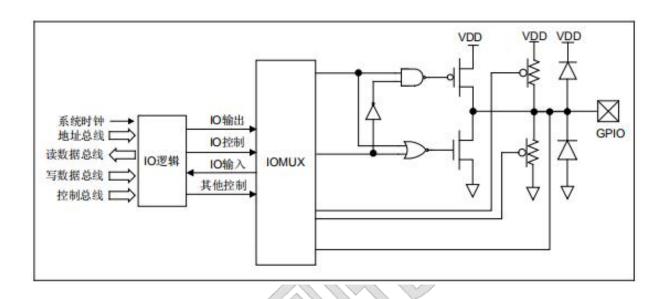
7.2 芯片供电电源


芯片供电电源为 VDD, 与其对应的是芯片的参考地 VSS。 VDD 给 GP10 端口,内部 LDO 输出电压给数字逻辑,Flash、SRAM 等供电。

7.3 外部复位 MRSTN 参考

注 1: 采用 RC 复位,其中 47K Ω \leq R1 \leq 100K Ω,电容=C1=(0.1 μ F),R2 为限流电阻,0.1K Ω \leq R2 \leq 1K Ω。

注 2:对 MRSTN 复位管脚,芯片内部固定集成了约 40K 欧姆的上拉电阻,可以省去上图中的电阻 R1。


注:采用 PNP 三极管复位,通过 R1($2K\Omega$)和 R2($10K\Omega$)分压作为基极输入,发射极接 VDD,集电极一路通过 R3($20K\Omega$)接地,另一路通过 R4($1K\Omega$)和 C1($0.1\mu F$)接地,C1 另一端作为 MRSTN输入。

7.4 输入输出端口

7.4.1 概述

本芯片支持多组 GPIO 端口, 最多支持共 21 个 I/O 管脚。 所有 I/O 端口都是 CMOS 施密特输入和 CMOS 输出驱动(可配置为开漏输出)。

7.4.2 结构框图

8 电气特性

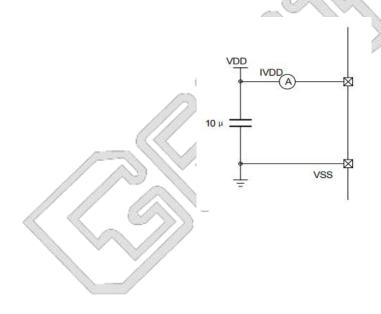
8.1 芯片工作条件

8.1.1 最大标称值

参数	符号	条件	标准值	单位
电源电压	VDD	VSS=0V	2.7 ~ 3.6	V
管脚输入电压	Vin	VSS=0V	-0.3 ~ VCC+0.3	V
管脚输出电压	Vout	VSS=0V	0.4 ~ VCC-0.2	V
VDD 管脚最大输入电流	IMAXVDD	VDD=5.0V, 25°C	100	mA
VSS 管脚最大输出电流	IMAXVSS	VDD=5.0V, 25°C	100	mA
芯片存储温度	Тѕтс		-65 ~ 150	°C

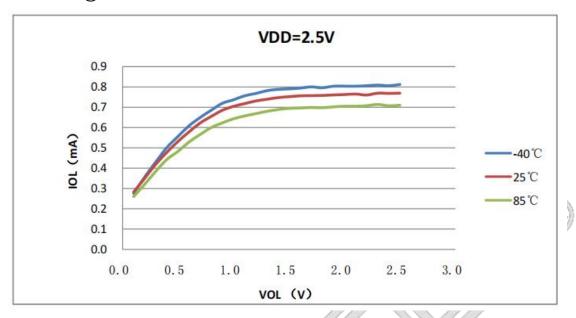
8.1.2 芯片工作条件表

参数	符号	工作条件	最小值	最大值	单位
芯片工作温度	Topr	_	-40	85	°C
芯片工作电源	VDD	_	2.7	3.6	V
AHB 总线频率	FHCLK	_		72	MHz
APB 总线频率	FPCLK	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72	MHz

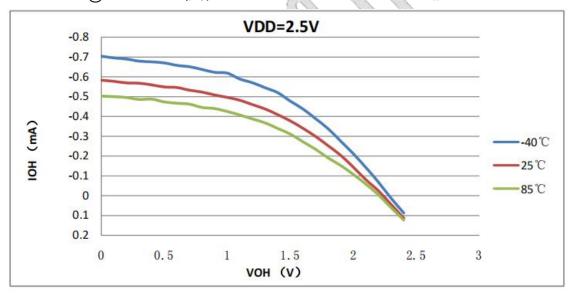

8.2 芯片功耗特性

参数	符号	最小值	典型值	最大值	单位	工作条件
芯片供电电压	VDD	2.7	(/2)	3.6	V	-40°C ~ 85°C
芯片静态电流	IDD	_	450		μA	25℃,上电复位,VDD = 3.3V,所有的 I/O 端口输入 低电平,MRSTN=0。
深度睡眠模式 下芯片电流	IPD1	_	6	_	μΑ	25°C,VDD = 3.3V,WDT 不使能,RTC 不使能,所 有 I/O 端口输出固定电平, 无负载。
浅睡眠模式下	IPD2	_	1.3	_	mA	25°C, VDD = 3.3V, WDT 不使能, RTC 不使能, 所 有 I/O 端口输出固定电平, 无负载; 系统主时钟为内 部 20MHz RC 时钟。
芯片电流	IPD3	_	1.5	_	mA	25°C, VDD = 3.3V, WDT 不使能, RTC 不使能, 所 有 I/O 端口输出固定电平, 无负载; 系统主时钟为外 部 20MHz HS 时钟。
正常运行模式	IOP1	_	4.2	_	mA	25°C, VDD = 3.3V, WDT

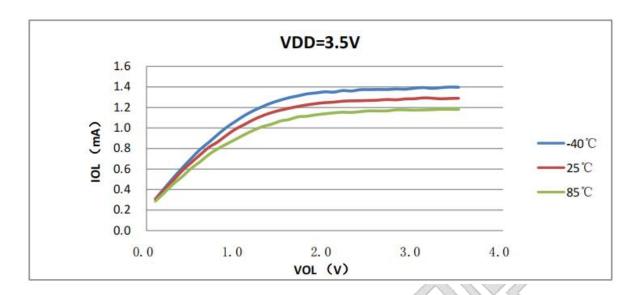
						I
芯片电流						使能,外设模块均工作,
						所有 I/O 端口输出固定电
						平,无负载,ADC 使用外
						部 VDD 作为参考电压;系
						统主时钟为内部 20MHz
						RC 时钟。
						25°C, VDD = 3.3V, WDT
						使能,外设模块均工作,所有 I/O 端
						口输出固定电
	IOP2	_	4.9	_	mΑ	平,无负载,ADC 使用外
						部 VDD 作为参考电压;系
						统主时钟为外部 20MHz
						HS 时钟。

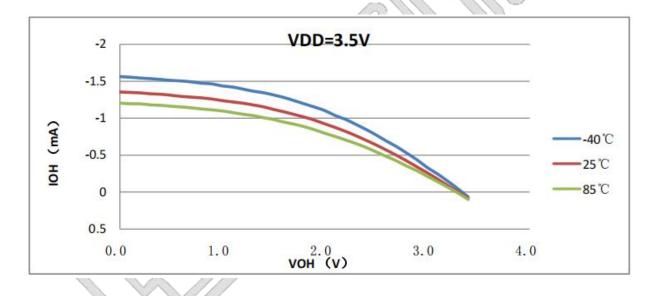

8.3 芯片特性参数测量方法

8.3.1 芯片功耗参数测量方法

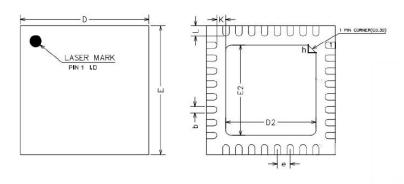


8.4 参数特性图


8.4.1 芯片 I/O 端口输出特性 IOL vs VOL @VDD=2.5V(驱动 0)


IOH vs VOH @VDD=2.5V(驱动 0)

IOL vs VOL @VDD=3.5V(驱动 0)



IOH vs VOH @VDD=3.5V(驱动 0)

9 封装尺寸

QFN32 5X5

SYMBOL	MIN	NOM	MAX				
A	0.7	0.75	0.8				
A1	0	0.02	0.05				
A3	0.20REF						
Ъ	0.18	0.25	0.3				
D	4.90	5.00	5.10				
E	4.90	5.00	5.10				
D2	3.40	3.50	3.60				
E2	3.40	3.50	3.60				
e	0.475	0.50	0.525				
K	0.20	13.00	=				
L	0.35	0.375	0.40				
h	0.35RHF						

10 点阵数据验证 (客户参考用)

客户将芯片内 "A"的数据调出与以下进行对比。若一致,表示 SPI 驱动正常工作;若不一致,请重新编写驱动。

排置: Y(竖置横排)点阵大小 8X16

字母"A"

点阵数据: 00 80 70 08 70 80 00 3C 03 02 02 02 03 3C 00

排置:W(竖置横排)点阵大小 8X16

字母"A"

点阵数据: 00 10 28 28 28 44 44 70 82 82 82 82 00 00 00 00

创造文明智能

深圳 OFFICE

地址:广东省深圳市福田区沙头街道泰然九路金润大厦 12C

电话: 0755-83453881 83453855

传真: 0755-83453855-8004